TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算。借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU、GPU、TPU)和设备(桌面设备、服务器集群、移动设备、边缘设备等)。TensorFlow™ 最初是由 Google Brain 团队(隶属于 Google 的 AI 部门)中的研究人员和工程师开发的,可为机器学习和深度学习提供强力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域。
Cudnn下载地址https://developer.nvidia.com/rdp/cudnn-archive 首先需要你的NVIDIA账户申请开发者然后做一个调查问卷就可以开始下载,请注意版本号对应,选择for CUDA 9.0版本,下载后,解压文件到CUDA目录替换文件即可,默认目录C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0,运行测试代码
1 2 3 4 5 6 7 8 9 10 11 12 13
import tensorflow as tf with tf.device('/cpu:0'): a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b') with tf.device('/gpu:1'): c = a + b
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A script for testing that TensorFlow is installed correctly on Windows. The script will attempt to verify your TensorFlow installation, and print suggestions for how to fix your installation. """
import ctypes import imp import sys
defmain(): try: import tensorflow as tf print("TensorFlow successfully installed.") if tf.test.is_built_with_cuda(): print("The installed version of TensorFlow includes GPU support.") else: print("The installed version of TensorFlow does not include GPU support.") sys.exit(0) except ImportError: print("ERROR: Failed to import the TensorFlow module.")
print(""" WARNING! This script is no longer maintained! ============================================= Since TensorFlow 1.4, the self-check has been integrated with TensorFlow itself, and any missing DLLs will be reported when you execute the `import tensorflow` statement. The error messages printed below refer to TensorFlow 1.3 and earlier, and are inaccurate for later versions of TensorFlow.""") candidate_explanation = False
python_version = sys.version_info.major, sys.version_info.minor print("\n- Python version is %d.%d." % python_version) ifnot (python_version == (3, 5) or python_version == (3, 6)): candidate_explanation = True print("- The official distribution of TensorFlow for Windows requires " "Python version 3.5 or 3.6.") try: _, pathname, _ = imp.find_module("tensorflow") print("\n- TensorFlow is installed at: %s" % pathname) except ImportError: candidate_explanation = False print(""" - No module named TensorFlow is installed in this Python environment. You may install it using the command `pip install tensorflow`.""")
try: msvcp140 = ctypes.WinDLL("msvcp140.dll") except OSError: candidate_explanation = True print(""" - Could not load 'msvcp140.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. You may install this DLL by downloading Microsoft Visual C++ 2015 Redistributable Update 3 from this URL: https://www.microsoft.com/en-us/download/details.aspx?id=53587""")
try: cudart64_80 = ctypes.WinDLL("cudart64_80.dll") except OSError: candidate_explanation = True print(""" - Could not load 'cudart64_80.dll'. The GPU version of TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Download and install CUDA 8.0 from this URL: https://developer.nvidia.com/cuda-toolkit""")
try: nvcuda = ctypes.WinDLL("nvcuda.dll") except OSError: candidate_explanation = True print(""" - Could not load 'nvcuda.dll'. The GPU version of TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Typically it is installed in 'C:\Windows\System32'. If it is not present, ensure that you have a CUDA-capable GPU with the correct driver installed.""")
cudnn5_found = False try: cudnn5 = ctypes.WinDLL("cudnn64_5.dll") cudnn5_found = True except OSError: candidate_explanation = True print(""" - Could not load 'cudnn64_5.dll'. The GPU version of TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Note that installing cuDNN is a separate step from installing CUDA, and it is often found in a different directory from the CUDA DLLs. You may install the necessary DLL by downloading cuDNN 5.1 from this URL: https://developer.nvidia.com/cudnn""")
ifnot cudnn5_found ornot cudnn6_found: print() ifnot cudnn5_found andnot cudnn6_found: print("- Could not find cuDNN.") elifnot cudnn5_found: print("- Could not find cuDNN 5.1.") else: print("- Could not find cuDNN 6.") print(""" The GPU version of TensorFlow requires that the correct cuDNN DLL be installed in a directory that is named in your %PATH% environment variable. Note that installing cuDNN is a separate step from installing CUDA, and it is often found in a different directory from the CUDA DLLs. The correct version of cuDNN depends on your version of TensorFlow: * TensorFlow 1.2.1 or earlier requires cuDNN 5.1. ('cudnn64_5.dll') * TensorFlow 1.3 or later requires cuDNN 6. ('cudnn64_6.dll') You may install the necessary DLL by downloading cuDNN from this URL: https://developer.nvidia.com/cudnn""")
ifnot candidate_explanation: print(""" - All required DLLs appear to be present. Please open an issue on the TensorFlow GitHub page: https://github.com/tensorflow/tensorflow/issues""")